Climate Change and Human Health

(Typhoid cases in Kathmandu, Nepal)

Bimal R Regmi, Dr. B. Pradhan and Dr. P.Lama

Climate Change Scenario in Nepal

 \triangleright Increasing temperature – 0.06 °C per year Rain has become less predictable and dependable both in terms of distribution and amount in Nepal ► Glacier retreat – with reduction in area /volume ► Plain areas are experiencing fog and winter are cold

Typhoid fever –effect of climate

Systemic infection by *Salmonella typhi*

- ➤ 3-4 weeks continuous fever communicable disease
- Enteric fever includes both typhoid and paratyphoid
- Nature of spread -sporadically, epidemically & endemically
- Occurs where water supply and sanitation is substandard

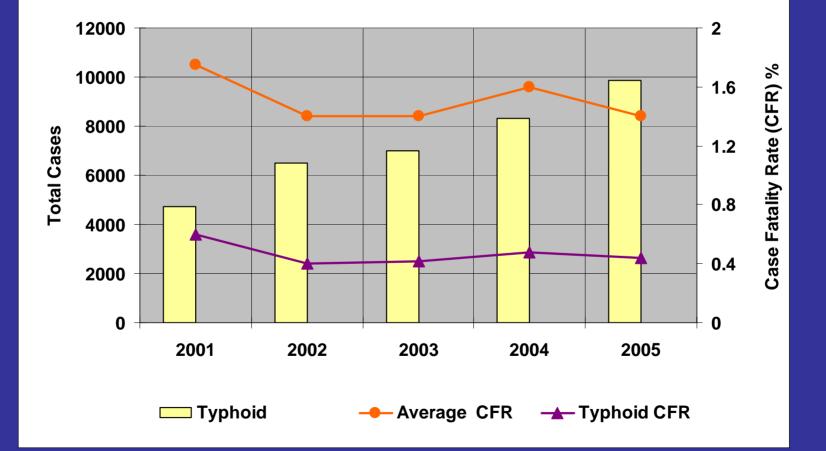
Household Access to Drinking Water Sources

Ecological Region	Total Households	Percent of Total Households						
		Tap/ Pipe	Well	Tube Well	Spout Water	Rivers/ Stream	Othe rs	
Mountain	285,217	72.2	6.2	0.0	17.1	3.4	1.0	
Hill	1,950,345	72.2	12.0	2.4	10.1	2.0	1.2	
Terai	1,938,895	30.8	6.5	58.6	1.1	0.6	2.5	
Nepal	4,174,457	52.9	9.0	28.4	6.4	1.5	1.8	

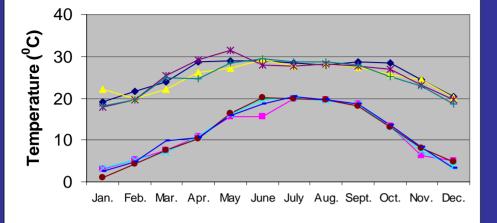
Households' Accessibility to Toilet and Sewerage

Ecological Region	% toilet coverage	% sewerage coverage
Mountain	40.4	1.0
Hill	55.8	18.7
Terai	37.3	7.4
Nepal	46.1	12.1

Water Quality Analysis

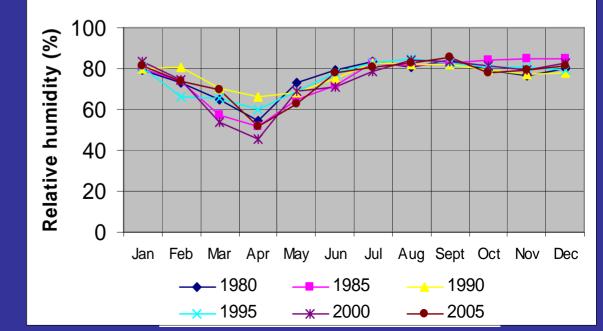

Devementer		WHO			
Parameter	Pr Tap	Ри Тар	Well	S. spout	GV
рН	6.5-8.2	6.5-7.5	7.5	7.5	6.5-8.5
Iron (mg/l)	ND-0.2	0.2	0.2	0.3	0.3 -3
Chlorine mg/l	ND	ND	ND	ND	0.2
Chloride mg/l	10-30	22-45	26-27	23-45	250
N-NH4 (mg/l)	ND-0.2	0.2	0.2	0.2	0.04-0.4
PO4 – P (mg/l)	0.1	0.1	0.1	0.1	0.4-5.0
Coliform bacteria (source)	+/-	+	+	+	-
Coliform bacteria (consumption point)	+				-
E. coli cfu/100 ml	10-131	3-20	48-200	58	0

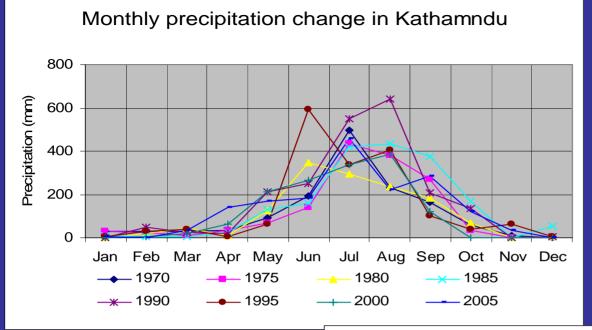
Bacteriological Water Quality of Different Sources Kathmandu valley

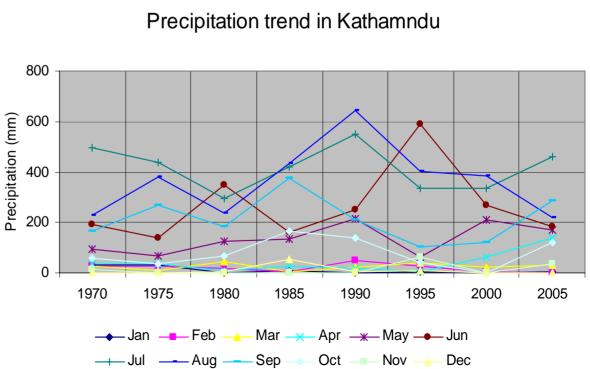

Faecal	Value as % of Sample Units of 15							
coliform	Dug	Shallo	Deep		Stone	Pond	River	Pipe
/100 ml	well	w well*	well	Spring	spout			water
0	0	60	80	40	20	0	0	60
1-100	40	30	15	30	40	0	0	20
101-	30	5	5	30	40	0	100	20
1000								
>1000	30	5	0	0	0	100	0	0
Source: Pradhan (2000); NWSC (2000). *Number Samples = 16.								
WHO Guideline value = 0								

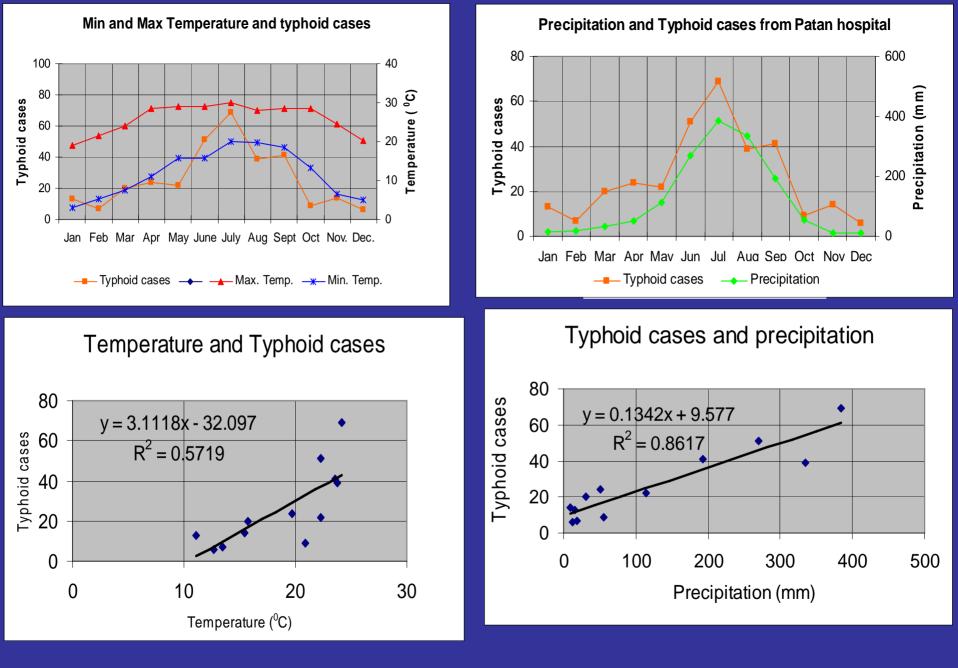
All the water sources of Kathmandu valley have faecal contamination at various levels

Trend of total inpatient cases of Typhoid disease and comparison of average case fatality rate and Typhoid disease

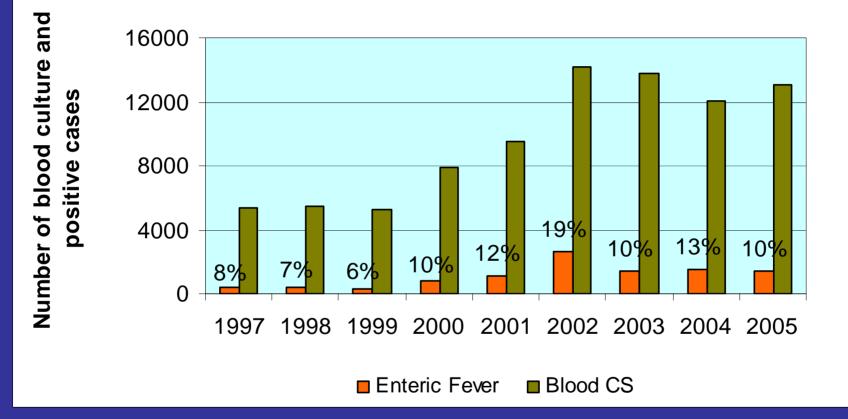

Temperature trend in Kathamndu

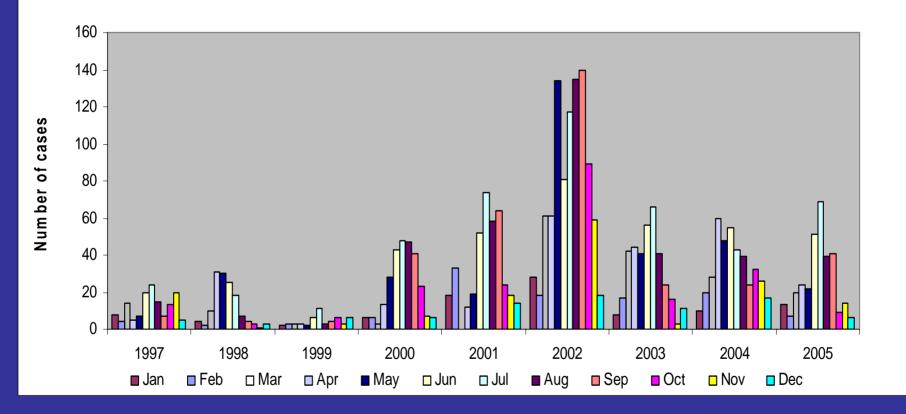



Kathmandu valley


- Winter days less cold
- Frost becoming rare
- Summer warmer

Relative humidity trend in Kathamndu





Positive association with temperature, flooding and typhoid case

Blood culture and Typhoid positive cases

Trend of Typhoid Disease in Patan Hospital

Typhoid cases increased during Winter

Future Concerns

Undoubtedly, temperature will rise in the coming years (global warming, change in human activities, etc.)
Changing pattern in the precipitation
Increase in frequency of drought and floods
Increase in frequency of vector and water-borne diseases

Future Concerns

There seems to be a relationship between temperature and precipitation, and vector and water-borne diseases, but their cause and effect relationship requires further studies (to establish relationship)

Integrated approach for health research and planning (particularly with climatic regions) – health should not be seen in isolation

Thank you