Reducing the biodiversity impacts of agriculture in Ethiopia

This policy briefing recommends policies that minimise agricultural expansion in areas of high biodiversity value and sustainable agricultural practices to maintain healthy and sustainable food systems.

The intimate relationship between biodiversity and agriculture

There is a close link between biodiversity and agriculture. Agriculture requires that surrounding ecosystems are healthy and resilient to support valuable ecosystem services. Some species act as natural pest controllers, reducing the pests and pathogens that threaten crops. For example, the fungal hyperparasite Lecanicillium lecanii provides a biocontrol service by reducing the severity of coffee leaf rust (Hemileia vastatrix) in Ethiopia. Other species act as pollinators for crops. For example, arabica coffee is pollinated by many bees and fly species in Ethiopia, which supports temporal coffee yield stability.

Policymakers must promote the conservation of Ethiopia’s areas of high biodiversity value (see Box 1) to maintain the ecosystem services that support agriculture. For example, if crops are grown in areas of high biodiversity value or in ways that do not support biodiversity-friendly farming, the health and resilience of ecosystems will be degraded, and farmers will lose valuable ecosystem services that support agriculture. In Ethiopia, agricultural intensification has reduced natural pest control and pollination ecosystem services for coffee production.

Ethiopia’s National Biodiversity Strategy and Action Plan (NBSAP) 2015–2020 recognises this close link between biodiversity, ecosystem services and agriculture. Furthermore, the NBSAP regards the valuation of ecosystem services as a necessary means of promoting conservation, sustainable use, and access to benefits.

Methodology

Global-scale datasets – from EarthStat, the IUCN Red List, FAOSTAT, Birdlife International, WWF, Key Biodiversity Areas, and the Observatory of Economic Complexity – were used to map areas in Ethiopia where both biodiversity value and crop production are high.

The research team at University College London (UCL) used these maps to identify the spatial overlap between areas of high biodiversity value and areas of crop production. These are hotspots of trade-off risk – areas where environmental goals might be at risk of conflict with plans for agricultural development.
Reducing the biodiversity impacts of agriculture in Ethiopia

Bananas, coffee and maize are among the most important crops in Ethiopia. They also occupy an extensive footprint within and surrounding areas of high biodiversity value (Figure 1). These crops currently pose the highest risk to biodiversity in Ethiopia because of the large amount of land used to cultivate them within or surrounding the areas of the highest biodiversity value.

Policymakers should minimise agricultural expansion and intensification in areas of high biodiversity value. Where this is unavoidable, policymakers must promote biodiversity-friendly farming practices to reduce negative ecological impacts from agriculture in these areas.

Ethiopia’s Green Economy Strategy specifies that policymakers minimise agricultural expansion into forest ecosystems. The strategy therefore aligns with this policy brief’s recommendations that policymakers reduce agricultural development in areas of high biodiversity value, including forest ecosystems.

A focus on self-sufficiency or international trade will not necessarily determine the impact of agriculture on biodiversity. It is more important where and how crops are grown, rather than whether they are consumed domestically or traded internationally.

Ethiopia already uses several biodiversity-friendly agricultural practices, including planting nitrogen-fixing trees, which has positively affected soil micro-organism diversity in planted forest systems, as well as improved fruit and vegetable varieties, the use of organic manure, and integrated pest management. These practices increase crop yields and improve nutrition.

Many biodiversity-friendly practices are relatively complex and require a good understanding of the local ecosystem. They can be knowledge-intensive, context-specific, and provide benefits in the long term. Research should be promoted that investigates which biodiversity-friendly agricultural practices deliver environmental, social and economic benefits in areas of high biodiversity value in Ethiopia.
The Microbial Biodiversity Directorate of the Ethiopian Biodiversity Institute promotes the conservation and sustainable use of the country’s biodiversity. This institute should be engaged in research and policy development on biodiversity-friendly agricultural practices in Ethiopia.

High biodiversity value areas in Ethiopia

The areas of the highest biodiversity value are scattered across the central and southwestern regions of the country (Figure 1, b and c). These areas are of high value because they support the country’s highest number of vertebrate species.

The country contains 10 ecosystems, and 18 major and 49 minor agro-ecological zones that support a great diversity of animal, plant, and microbial genetic resources, making the country one of the world’s biodiversity hotspots.6 Ethiopia possesses an estimated 6,000 species of higher plants, of which 10% are endemic. In addition, the country reports 284 wild mammal, 861 bird, 201 reptile, 200 fish, 63 amphibian, and 1,225 arthropod species. Of these faunal resources, 29 wild mammal, 18 bird, 10 reptile, 40 fish, 25 amphibian, and 7 arthropod species are endemic to Ethiopia.6

Conclusion

Ethiopia’s ecosystems support biodiversity and ecosystem services, such as pest control and pollination, which are essential for maintaining healthy and sustainable food systems. Agriculture threatens ecosystems that are crucial for biodiversity. Policymakers should prioritise agricultural expansion in areas outside of Ethiopia’s high biodiversity value areas, so that food production can continue into perpetuity without degrading the biodiversity and ecosystem services on which it depends.
 sentinel is an interdisciplinary research project seeking to address the challenge of achieving ‘zero hunger’ in sub-Saharan Africa, while at the same time reducing inequalities and conserving ecosystems.

Download this report at www.sentinel-gcrf.org/publications

This policy briefing describes the risk of agricultural production to biodiversity in Zambia. It is aimed at policymakers in agriculture, environment, and planning.

Corresponding author:
Dr Tim Newbold, University College London, t.newbold@ucl.ac.uk

Image credits:
Front cover – Brad, flickr.com. CC BY-ND 2.0
Page 2 – Bioversity International, flickr.com. CC BY-NC-ND 2.0

Publisher:
International Institute for Environment and Development/Sentinel
Third Floor, 235 High Holborn, London, WC1V 7DN, UK
Tel: +44 (0)20 3463 7399
Email: info@iied.org
www.iied.org

Funding:
Sentinel is funded by UK Research & Innovation (UKRI) through the Global Challenges Research Fund (GCRF) programme for ‘Growing research capability to meet the challenges faced by developing countries’ (‘GROW’). Grant Ref: ES/P011306/1.
However, the contents of this document are the sole responsibility of the authors and do not necessarily reflect the position of our funders.