iied’s approach

The International Institute for Environment and Development (iied) is working with country-based research teams in case study countries to pursue economic analysis using participatory methods. These will bring representatives of major stakeholder groups together and provide a forum for different interests to be considered and balanced. This approach is being termed stakeholder-based Cost Benefit Analysis.

It is hoped that such an approach will support the creation of relevant data sets and allow analysis that takes into account the distribution of costs and benefits in a variety of climate change affected water systems. This should result in better and more equitable adaptation planning with widespread acceptance by affected communities and other stakeholders.

For further general information about this project please email Muyeye Chambwera at iied muyeye.chambwera@iied.org

iied, 80-86 Gray’s Inn Road, London, WC1X 8NH, UK. Tel: +44(0)20 3463 7399

This project is funded by the International Development Research Centre (IDRC) as part of the climate change and water programme. iied works with economists from the respective case study countries to apply and adapt economic methods to make them applicable to a wide range of developing country contexts.

www.idrc.ca
It is widely recognised that climate change will impact upon the water sector of virtually every country in the world. The nature of these impacts are wide-ranging including floods, droughts, salinity intrusion and the loss of glaciers. All of these affect the availability of water to households, agriculture, industry and the environment. Adapting to climate change in the water sector is going to be urgently needed in affected countries.

Funding for adaptation has been promised by the international community. There is, however, multiple ways these resources could be used. Complex decisions will have to be made that ensure that resources are used efficiently, but also that the benefits of adaptation measures are equitably distributed between different stakeholder groups.

Furthermore, effective adaptation requires action by multiple stakeholder groups and at different scales. Available actions by households, for example, are facilitated both by local economic conditions and government policy. Different groups have different priorities and incentives for action. Methods to facilitate effective communication and negotiation between groups will be necessary to avoid the non-engagement of key groups preventing the prioritisation of adaptation measures.

Methods to facilitate effective communication and negotiation between groups will be necessary to avoid the non-engagement of key groups preventing the prioritisation of adaptation measures. Different groups have different priorities and incentives for action. Methods to facilitate effective communication and negotiation between groups will be necessary to avoid the non-engagement of key groups preventing the prioritisation of adaptation measures.

It is inevitable that there will need to be a degree of economic assessment and accountability for adaptation funds from national, bi-lateral and multi-lateral sources. To date, however, the extent of assessment generally demanded by donors has been beyond the capabilities of most developing countries to fulfil. As such, very little adaptation funding has been successfully transferred to developing countries.

There is an urgent need for new approaches to economic assessment that:

- Balance the need for thoroughness with practicality and speed of assessment.
- Allow the interests of different stakeholders, and especially the poor, to be taken into account.
- Recognise the reality of economic assessment in data sparse regions.
- Recognise the systematic and uncertain nature of assessment of climate change effects.

Project objective

To apply stakeholder-focused economic analyses to selected water adaptation settings of developing countries. Typical stakeholders could be government, private sector, small and large farms, environmental interest groups and sub-categories of these.

Approach

A combination of stakeholder engagement and economic analysis.

Malawi

Lake Chilwa is the 12th largest lake in Africa, lying 100km to the south of Lake Malawi. Rainfall in the catchment is highly variable and the lake expands or contracts with variation in precipitation. Climate change is expected to increase this variability. The lake and its tributaries provide water for agriculture and urban use. In addition the lake is a significant fishery providing livelihoods for the estimated 80,000 fishermen. Furthermore, rainfall patterns in the lake catchment are expected to change, shifting towards higher rainfall in the north and lower rainfall in the south. Adaptation may be required to avoid this non-engagement of key groups preventing the prioritisation of adaptation measures. Furthermore, adaptation to water variability often involves shifting between activities, for example agriculture to fishing. Adaptations, therefore, have different implications on costs, benefits and water use between different user groups.

Malawi contact: Rodney Lunduka lunduka@yahoo.co.uk

Bolivia

The cities of La Paz and El Alto are located in the La Paz Valley of the Andes Mountains. The cities also contain several different types of farms. The water supply both for the cities and for agriculture are partially dependent on meltwater from glaciers, which are effectively natural reservoirs. Higher temperatures are causing the glaciers to shrink, increasing the rate of water evaporation and lowering the volumes of meltwater available. Furthermore, rainfall patterns in the valley are changing. All of these effects significantly change the hydrology of the region and the availability of water to different sectors. The case study will look at how the water system can be adapted to meet the competing needs of urban and rural users.

Bolivia contact: Javier Gonzalez Iwanciw jgonziw@gmail.com

Nepal

Rupa Lake is the third largest lake in the Pokhara valley of Nepal. It is situated at an elevation of 687m with an area of 32 km². The Nepal’s National Adaptation Programme of Action (NAPA) shows the area is vulnerable to climate change, with landslides a particular concern. The region in general has experienced increased temperature, erratic and intense rainfall over the past 10 years. Livelihoods in the region are predominantly based on agriculture and fisheries. Rupa Lake and its watershed is also a popular tourist destination and has high potential for developing agro-ecotourism. Impacts of climate change are clearly observed in the lake ecosystem through increased siltation due to climate change as drought is prolonged and rainfall becomes erratic. This causes declined productivity. This case study will develop a stakeholder-focused cost benefit analysis for Rupa Watershed which is likely to suffer from extreme weather conditions of heavy rainfall, landslides, and increased siltation due to climate change, affecting several water-dependent activities of social, economic and ecological value to a wide range of stakeholders.

Nepal contact: Arjun Bhakal arjun.bhakal@gmail.com