Expanding the green revolution

The Government of India’s need to achieve national level food security led to the green and white revolutions. Both were targeted at generating surplus from intensive production in well-endowed irrigated areas; and used external, input-intensive, technological approaches directed mainly at rice and wheat. The dominant thinking came from an ‘availability perspective’: one that was concerned with the increasing number of mouths to feed; the importance of supplying food to its industrial and urban workforce; putting in place the science and technology to provide know-how for inputs; making inputs available cheaply by extending subsidies; and an administrative structure that could procure and distribute food. With the dominance of the availability argument, access and affordability were tweaked, and met through welfare-related subsidies. Stability was seen from an output perspective, without considering the sustainability of the natural resource base.

The Prime Minister’s Independence Day speech in 2005, and several other policy statements later on, focused on the expansion of the green revolution to rainfed areas. A number of aspects were highlighted to justify the need to intensify agricultural production. These included a spate of farmers’ suicides since the mid-1990s; the indebtedness that is a symptom of the larger agricultural crisis; increasing uncertainty due to climate variability; a growing shortage of pulses and other food items; and the steep erosion of farmers’ incomes. These concerns rekindled debates on inclusive growth and future food security. Climate change risks, as well as the mitigation potential of actions in rainfed areas, also came under discussion.

Emerging issues

1. Food and nutrition insecurity is on the rise. The availability of food grains (per capita per day) has reduced from 510 grams in 1991, to 439 grams in 2010. This reduction in the consumption of cereals and pulses is corroborated by the national sample survey estimates of 1993-94, 2004-05 and 2009-10. These surveys indicate that per capita calorie and protein intake has gone down, whilst fat intake has increased. India ranked 66 among 88 countries in the Global Hunger Index of 2010; and a related exercise in 17 major states identified the situation as ‘serious’ in four, ‘alarming’ in twelve and ‘extremely alarming’ in one.

Another important concern is the agriculture and nutrition ‘disconnect’ in India, with rice and wheat replacing millet crops in the diets across the rainfed areas – partly as a result of the subsidised distribution of rice and wheat through the public distribution system. Nutritious crops
A multi-pronged complex challenge

Feeding India’s future generations will be a multi-pronged complex challenge, and one that will involve the spread of incomes and production across poorer agricultural areas.

2. There is ‘technology fatigue’ and ‘policy paralysis’ in green revolution agriculture. The successive Five Year Plan documents widely acknowledge the setting in of ‘technology fatigue’ in the core of the green revolution areas. Decelerating yield of food grains against burgeoning fertiliser subsidies, and ever declining fertiliser use efficiency, is having expensive, wasteful, and environmentally damaging consequences. The fertilizer subsidy in 2011-12 was around Rs.75,000 crore, for instance, about 1.3 per cent of the gross domestic product. The packaging of a whole slew of subsidies around irrigated agriculture has also increased demand for water, with a greater reliance on ground-water leading to water tables plummeting.

To policymakers, rainfed areas have generally been perceived as drought prone, low productive, high risk, and backward; and to date they have received limited attention. An estimate by the Centre for Budget and Governance Accountability suggests that between 1997-98 and 2011-12, from the total expenditure on agricultural subsidies of about Rs. 1.5 lakh crore, only one per cent was on rainfed agriculture. The rest was on intensive agriculture – divided into price support/food (38 per cent), fertilizer (37 per cent), irrigation (21 per cent) and electricity (3 per cent). See Figure 1 below.

Government interest has now turned to the perceived ‘under-performing’ rainfed areas. Inherent policy paralysis has meant that the approach being taken is to try and replicate the green revolution, and transfer the technologies and approaches to rainfed areas that were originally designed for intensive irrigated areas. This is partly because of an assumption that investment packages developed for irrigated areas are extendable to rainfed areas; but also because of a rigid top-down structure in which the propagation of technology comes from the scientific community, through the line departments, down to the farmers.

Why more of the same will not work

In his speech at the 57th meeting of the National Development Council, the Prime Minister stated that: “We need to build on the success of the last Plan by increasing land productivity in agriculture so that we not only meet our rising demand for food, but also increase incomes of those dependent on agriculture.” The draft Twelfth Five Year Plan 2012-17 in its overview mentions that “… faster growth in agriculture, and especially in rain-fed areas where most of the poor live, will be much more inclusive than a GDP growth that is driven entirely by mining or extraction of minerals for exports” (§1.10, p.3).

There is an increasing concern that the green revolution policy expansion to the rainfed areas, that is providing more of the same to these newer areas where the revolution has not yet had a major impact, will not work. The approach is underpinned by the belief that increased agricultural productivity is best achieved by focusing on single, high-performing (in terms of yields per unit) products; and that efficiency should be measured in terms of narrowly defined single crop/animal productivity rather than wider system level productivity.

Those in favour of the expansion of the green and white revolutions point to their relative successes, including in some rainfed areas, where agriculturalists and livestock keepers have followed a similar intensive approach and have succeeded in raising crop yields and milk productivity. What is not recognised is that such achievements have come at a high cost: of depletion of groundwater and soils, privatisation of the commons, usurpation of resources by a few, and enhanced future risk. In addition, the use of the external inputs driven, single crop/product focused, transfer of technology approach, does not build on the knowledge and experience of local understanding – knowledge that articulates in favour of an extensive method of integrated natural resource-crop-livestock production system, with in-built synergy and mutual dependence (see Table 1).

Critics also argue that the expansion programme is being propagated without due recognition of the rainfed areas’ pronounced location specifics; that is, the variability of their natural resources and the diversity in production systems that characterise rainfed areas. Rainfed agriculture systems have also evolved over time to manage climate variability, and with traditional
adaptation mechanisms such as diversity in crops sown and crop/commons-integrated livestock systems. With the expansion programme, the high degree of integration of these systems, and the diverse livelihood portfolios at household level will be forced to give way to mono-crops and specialisations exposing them to greater vulnerability. With the projections of an increasingly variable climate leading to more incidents of extreme events, rainfed areas need an integrated agricultural policy that can secure crops and livestock against increasing climate risks, while supporting inclusive and sustainable growth, and contributing to the mitigation of global warming.

The national importance of rainfed areas

The rainfed areas of India are critically important because:

1. They cover a large area of India – 62 per cent of the geographical area and 68 per cent of the gross cropped area; which includes 42 per cent of the area of major crops like rice, 77 per cent of the area for pulses, 66 per cent for oilseeds, and 85 per cent of coarse cereals. They also contain a large proportion of the livestock population (78 per cent of cattle, 64 per cent of sheep, and 75 per cent of goats).

2. Rainfed areas contain a large proportion of the population, and have a diverse agro-ecology – growing 34 varieties of predominant crops compared to three or four in irrigated tracts. Harnessing the full potential of these areas will contribute significantly to meeting India’s rising food and nutrition requirements. And, in a context of increasing resource limitations (energy, water, land, and finances among others) and carbon footprint (see Box 1), these gains can be realised in a sustainable, ecological, economic and socially equitable manner.

3. Rainfed agriculture relies on knowledge and experience, based on local understanding, to facilitate an extensive system of production where there is synergy and mutual dependence. Output from one aspect becomes the input for another. For instance, crop residues are fed to livestock who produce manure, that when fed into the soil, increases productivity and soil health. Unfortunately local innovations, management and the knowledge-centric efforts of farmers are often outside the scope of subsidies or public support, and not packaged into external inputs (see Table 1).

So what are the options?

The business-as-usual approach – extending the dominant approach with all its attendant costs – will cost India dear economically, ecologically and socially. The alternative is to implement a locally specific approach with all its attendant benefits (see Box 2). This is more likely to ensure an inclusive, climate resilient growth, that is sustainable and provides food and nutrition security.

In summary, the two broad possibilities for expanding the

Box 1 The heavy footprint of irrigated agriculture

India wants growth with inclusiveness and sustainability. In the high input-intensive system, this growth is distorted by policies and investment structures biased towards irrigation.

- **Energy.** This is external and driven by subsidies that support a system that is energy intensive and produces a high carbon footprint.
- **Water.** The whole intensive system is based around water to raise productivity, which also demands energy and has a high carbon footprint.
- **Fiscal.** The high input system requires subsidies to function, which is very costly.
- **Inclusiveness.** Extra effort is needed to make the high input intensive system inclusive because it is expensive to support the costs for everyone. If everyone is to benefit it will require permanent subsidies (the European Union is an example).
- **Sustainability.** The high input system is top-down (seeds provided, energy provided, etc.) without respecting agro-ecological variability.

Table 1. Comparing cultivation practices using transfer of technology and knowledge-centric revitalisation

<table>
<thead>
<tr>
<th>Issues</th>
<th>Transfer of technology</th>
<th>Knowledge-centric revitalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology/knowledge</td>
<td>Production gain in response to inputs/technology</td>
<td>Context specific and involves management of capacities including input management</td>
</tr>
<tr>
<td>Productivity</td>
<td>Single product – focus is on enhancing productivity</td>
<td>Product of a complex system – also focuses on reducing risk</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Technical and economic – measured as output per unit of external input (water, fertilizer)</td>
<td>Cumulative value/output and efficiency of unit of natural resources</td>
</tr>
<tr>
<td>Intensive/extensive</td>
<td>Crop- or input-intensive - mainly in areas with better soils, water and others.</td>
<td>Crops-livestock system spread over a larger area – including marginal lands (extensive)</td>
</tr>
<tr>
<td>Specialised/integrated</td>
<td>Mono-crop</td>
<td>Mixed and multiple crops – diversified and location specific</td>
</tr>
<tr>
<td>Private/commons</td>
<td>Owner operated</td>
<td>Production in private lands is dependent on commons</td>
</tr>
<tr>
<td>Input dependence</td>
<td>Industrial input production and supply at high rates of subsidies</td>
<td>Farm based inputs on local networks of input production and distribution</td>
</tr>
</tbody>
</table>

production possibilities in rainfed areas:

- **Continue with the extension of the dominant approach,** with input intensive mono-cropping, based on the green revolution in a ‘transfer of technology’ mode, characterised by high external inputs, high costs, high energy use and low diversity.

- **Focus on a location-specific, decentralised, natural resources integrated, knowledge-centric approach** to the revitalisation of rainfed agriculture. This will be characterised by low external but high internal inputs, multiple land use at farm and landscape level, and synergies with other land uses in which variability and diversity are pro-actively exploited for productivity. This option has by far the greater potential.
Box 2 Case Study

Farmers in Gorantlavladda Palli, in the arid district of Anantapur in Andhra Pradesh, pooled their 18 borewells in blocks of about 50 acres, and established a pipeline grid with sprinklers with support from a pilot programme of the government.

The Watershed Support Services and Activities Network (WASSAN) and the Federation of Self-help Groups (SHGs) facilitated the process. The farmers collectively decided to secure their rainfall groundnut crops from rainfall failures by creating an entitlement up to three protective irrigations, during the season, for all the farmers in the grid – irrespective of ownership of the bore-wells. To address falling groundwater tables and failing aquifers owing to unsustainable extraction of groundwater, farmers have decided that no new bore-wells are allowed in the village for the next 10 years. Of the 248 acres of rainfed lands in the village, 192 acres are now secure from climate risks. All the households, including 28 farmers who did not have access to bore-wells before, now have access to support irrigation. Crop productivity has increased from 175-220 kg per acre before the intervention to 350-440 kg per acre afterwards, i.e. near doubling of the productivity. This conditional public investment in the form of a pipeline grid for supportive irrigation for rainfed crops of all the farmers is a paradigm shift in ‘irrigation’, one that integrates natural resources governance and security of access to water to manage climate variability in an arid environment.

About the project

IIED, in partnership with University of Peking in China, the Revitalizing Rainfed Agriculture Network and Rainfed Livestock Network in India, and the Arid and Semi-Arid Lands Secretariat of the Ministry of State for Development of Northern Kenya and other Arid lands in Kenya, is implementing a one-year project entitled New perspectives on climate resilient drylands development (2012/13). Funded by the Ford Foundation, the project is researching the assumptions, arguments and evidence that underpin national and global narratives on the drylands in order to formulate more progressive perspectives based on scientific evidence and traditional local knowledge and experience. The views expressed in this briefing, however, do not necessarily reflect the position of the Ford Foundation.

Contact: Ced Hesse
ced.hesse@iied.org
IIED, 4 Hanover Street, Edinburgh, EH2 2EN, Scotland
Tel: +44 131 226 7040
Fax: +44 131 624 7050
Website www.iied.org

Notes

Download the pdf at http://pubs.iied.org/10041IIED.html