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1. Tntroduction

A review of the literature on “sustainable' economic development
auggests that tweo interpretations of that concept have emerged: a
wider concept concerned with sustainable economic, eceological and
social development and a more narrowly defined concept largely
concerned with “environmentally sustainable development’, i.e.

with optimal resource and environmental management over time.?

This paper is interested in the ‘narrower' interpretation - the
relaticonship between environmental guality and sustainable
economic activity. The latter is interpreted as that level of
aconomls activity which ileaves the environmental cguality level
intact, with the policy objective ccrresponding to this notion
beinﬁ the maximization of net benefits of economic development,
subject to maintaining the services and guality of natural

resources over time.?

The term "natural rescurces' is used breoadly. It includss
renewable resources, such as water, terrestrial and aguatic

biomass: non-renswabhle resources, such as land in general.

minerals, metals and fos=sil fuels:; and semi-renewable resources,

such as soil guality, the azsimilative capacity of the

environment and ecologiczl life support systems.

Comsegquently, maintaining the services of a natural capital stock

does not necessarily imply maintaining this physical stock of



composite resources intact, which in any case, may not be
desirable or feazible for non-renewables, On the other hand,

keeping the level of environmental guality intact implies caution

in assuming that an irreversasible loss of the natural capital
gtock is justified if it results in the formation of more man-
mades czpital. Some of the functionz of the envirenment are not
replicable by reproducible capital, such as complex life subport
systems, biclogical diversity, azesthetlc functions=, micro-
climatie conditionsg and so forth. Others might be substituted
but not without unacceptabkle cost. In additieon, degradaticon of
one or more parts of a resource system beyond scome thresheld
level may lead to a breakdown in the integrity of the whels
system, dramatically affecting recovery rates and resilience of
the system. The total costs of the system breakdown may exceed

the walue of the activity causing the initial degradation.t

Thus under certain conditions maximizing the net benefits of
economic develeopment, subject to waintaining the services and
guality of the stock of natural resources over time, is an
pgsential criterion for sustainable development. As Pgarce and
others have comnsistently aroued, this criterion requires
chservation of certain biophysical conatraints.’ That is, 1f the
resource base is a composite of exhaustibles and renewables
({including semi-renewables and waste-assimilative capacity},

sustainability requires:

fal utilizing renewable resources at rates less than or

equal *o the natural or managed rates of regeneration:




ib} gensrating wastes at ratesg less than or esgual to the
rates at which they can be absocrbed by the assimilative

capacity of the environment: and

{e} optimizing the efficiency with which exhaustible

resources are used, which is detarmined, inter alia. by the

rate at whiech renewable resgsurces can be substituted for

exhaustibles and by technological progress.

Failure to obhey these constralnts will lead to a process of
environmental degradation as the resource base is depleted,
wastes accumulate and matural ecological processes are impaired.

This of course assumes that:

{a}l the gervices, or functicnz, of the environment are

essential te the economic system;

fhY there are insufficient substitution possibkilities
between reproducible capital and these envirconmental

functicons: and

{c}'these environmental functions are not augmented by a

constant positive rate of technical progress.®

The conditions governing the cptimal trade-off between
environmental guality and consumption over time hawve been

analyzed in various models of economic-—-environmental



intaraction.? Although these models assume some form of
envirenmental degradation process, and thus implieitly azsume
transgression of kiophysical constraints by the sconomic system,
no attempt is made to examine explicitly how an sconomy wight
respond to the limits imposed by these constraints and hence the
conditions for optimal sustainable economic growth. In the next
section, a simple model is developed te characterize the
conditions necesgsgary to maintain the environmental sustainability

of an economic system over time.

2. A Model of Environmentzally Sustainabkhle Economic Activity

The following model will be used te analyee optimal growth paths
for an economy faced with the choice of operating under the thres
long-term biophyvsical constraints: harvesting of renewable
resources within their natural and managed rates of regeneration;
extracting exhaustible resocurces at the rate at which renswables
can be substituted for them {which over the leong run implies a
zaero rate of exhaustion of the ‘compozite' rescurce); and
emitting wastes within the assimilative capacity of the

environment. .

The key to the follewing model is a particular definition of
environnental degradation. At any time t, the rate of
degradation é ig a function of: {i) the flow of waste (W} in
excess of the amount assimilated by the environment (&) and {(ii)}
the flow of renewable resasources harvested froem the environment
(R} in excess of the {managed or natural} bielogical preoductivity
of these resources {&), pluz the flow of exhaustible resources
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extracted from the envirenment {E). Mathematically, this may bhe

Written as:

S = £{IW - A1, [{R - G) + BI). (1)

The following assumptions are made about {1):

{i) It is a differentiable, increasing function of its
argument=s. A= the net waste leavel increases and as the
excess rate of harvesting incresases, zo does the level

of environmental degradation.

{idi} It is a convex funetion of its arguments. This can

. best be illustrated in Figures 1-3. BAs net wastes

I emitted increase, so the rate of degradation increases

T #t an increasing rate (Figure 1}. The =zame applies to
net resources harvested {Figure 2}. However, there is
also a trade-off between thesze two factors that
influence the environment. To attain a gonztant leval
of degradation, o¢ne ¢an reduce the net harvesting of
resources if one increases the net levels of waste
generated. But the reduction in harvested rescurces
required as oms increases the net waste generated

itself increases (Figure 3).

{iv} The combinations of [W — &) and [{R - G) + E] that
achieve zZzro degradation are given by the locus of
points going towards the origin in Figure 3. Thus a
sufficient condition for zere degradation is W = A4 and
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(R + EY = G.%

Note that, as stated, sguation {1} is ‘symmetrical'; that is, if
the biophysical constraints are observed (i.2.., W £ & and {E + E]
£ %) in the long run!, then the rate of environmEntai dagradation
will be zero or there wmay be an “improvement' in environmental
gquality.® These =sffects will be made more eXplicit in the next
saction. Hﬁwever, it is worth notimng that observed envircnmental
impacts are mere likely to bs Tasymmetrical': i.e.. in some
economic—environmental systems, it may take a long time before
adiberence to these blophysical constraints leads to any
improvement in enviromnmental quality, whersas failure to observe

these constraints may causs rapid environmental degradation.

Having defined the level of environwmental degradation as =
function of net waste generation and net rascurces. consumsd, wea
now wish to link it to thea level of economic activity
feonzsunption) and the “"stock™ of environmental asssts avallable.
Wa label each of these respectively as € and ¥, and postulate the

Following fuctions with the following propesrties, 1t

W= W(C), W'LC) > 0, WU{C) > 0 (2}
R = R{C), R'(C) >0, R"{C} >0 (3]
E = E{C), E'(C) >0, E"(C) >0 {4}
A = A{X), R'(X) >0, A"(X) <O {5)
G = G{¥}, G'{XK}) > G, G"(X}) < O. (€}

In othar words W, E and E are incrzasing convex functionz of <,




and A and ¢ are indreasing concave functions of X. The concept
of envircnmental guality adopted by this model is fFairly broad
and essentially synonymous with the entire gtock of environmental
goodsa. The three basic functions, or “services', of this stock
are the assimilation of waste, the production of material and
energy inputs for the economie system and the provision of
amenity, life support and general “ecolegical' services. This
allows the modsl to assume that, for all intent and purposses, A
and G are increasing functions of X. The assumption that W, R
and E are all increasing functions of economic activity are well
known results stemming from material-balance models.!! In
addition, the assumptlon of the convaxity of waste generation,
WiC}), and the concavity of asgimilative capacity, A{(X), i=
consistent with the medels daveloped by Forstery, which examined
optimal” economic growth under one set of these biophysicals
constraints, namely that waste lewvels should not exceed the-
assimilative capacity of the environment.'? Similarly, standard
models of renewable resource harvesting assume concave growth

functions, G{X), and convex harvaesting ratas, R{C} .13

Substituting (2)-{6} inte (1) vields an =guation in whioh 45/4¢t
is a function of C and ¥X¥. Since A and & are concave functions,
it follews that -A and -G are econvex. Hence ds/dt, which is an
increagsing convex funcotion of its eriginal argumentz, [W - Al and
[[R - &) + El, will also be s convex function in its transformed

state, asz a Function of € and X. This can be written as

-’

g = hic, X, {7}



Wwith he > &, hee > 0, he € O and hyxxy >0 and hechyxy - hxec? > 0.

A typlcal set of contours of (7} are given in Figure 4. As
consunption increases, so the aenvironmental gquality adjusted
stock required to keep the lewvel of degradation constant
increases at an increasing rate. In addition to the assumed
shape of the X,C contours, we would impose some minimum walue on
X. This we would define az the minimum environmental stock that

rrovides a viable hase for sustained economic activity., In ternmns

of equaticon (7}, this restriction can be written
S = hig, ¥), X > X (73"
T »r 04 x4 XK.

Finally, a link can be established betwsen é; the rate of
environmental degradation, and ﬁ, the rate at which environﬁental
quality is changing. Clearly, the basic relationship iz an
inverse one: az the degradation increases so the environmental

steck declines. Assuming both are measured in comparable units,

we can reprezent thi= by

¥ = - as [}
X = — anfc, %), %> X (9}
_{{ < 0, X ¢ X,

where a is2 a constant =scalar.
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The dynamicz of these relationships can best be illustrated in
the case of agriculture - or perhaps more appropriately agro-
ecasystems — as one is talking about systems that are directly
dependent on environmental resources and essential eceloglcal
funections fer ‘sustainability'. Thus, for example, Conway has
employed the concept of “resilience® as the basis of his
definition of agricultural sustainability - “"the ability of =
system to maintain its productivity when subisct to stress or
ghoek. "1  UUnchecked resource abuse within an agro-edosystem,
whether the result of inappropriate use of agro-chemicalz and
feritilizers, overcropping of erodible soils, poor drainage,
ete., can affect overall agro-ecosystem sustainability by
in¢reasing the susceptibility to stress, shocok, or both. The key
is reducing the resource degradaticon, and therefore the stresses
and shocks associated with it, to a level where the natural
processes and functions of the agro—ecosystem - appropriately
suksidized by human-made inputzs and innovations — can counteract

these disturbances and thus preserve overall sustainability,.

Alternatively, one can draw an anzalogy with =tandard renewable
resource proklems, where the rate of biolegical productivity is
azsumed to bhe 7 fuﬁctiﬂn of the steck level, or with pollution
vrroblems, in which the rate at which pollution “decays® is also
assumed to be a funetion of the s2tock level . !Ff For example, in
the standard renewable resource problem, there is always assumed
te be a threshold level below which the population is dcomed. AR
stock levels above this threshold lewel the rakte of growth

inereases, but at a diminishing rate. Similarly, in polluticon



models with non-constant decay functions, ift is usually assumed
that the more pollution the faster it is dissipated., albeit at a
diminishing rate. At some maximum threshold lewvel of pollution,
fhe natural clean—up processes in the environment are completely

destroyed.

Finally, Barbier has applied a relaticnship similar to (2} in a
model- of soll erosion in the uplands of Java.!s Heres, the
environmental stock variable, X, iz a measure of so0il depth,
which is degraded at an accelserating rate by the use of s
conventicnal cropping system and 1s augmented by the use of an
alternative so0lil conservation package. In this system, the
cragss—partial derivatives betwesn these two arguments of the

functidn h were considered to be negative.

3. Optimal Sustainable BEconeomic Growth

Using the above model, it is now possible to explere the
cﬁndiﬁions for environmentally zustainable growth. For example,
it is assumed that social welfare at any point in time is
megsured by a strictly concave utility function U of current o

and the current stock of X:

U = {J{C,XK}, f10)
with e > O, ey € 0, Uy > G, Ugn € 0, Ugy = O, lim Ug = =,
C»0)
and lim Ux = =,
X0
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Equations (1} and (7} were deliberately constructed to reflect
the gustainablility criteria of observing the blophysical
constraints. That is, a minimum condition for an economic growth
path to be sustainable over the long run is W= A4, R + E = G,
which ensures that no environmental degradation will ococur,

i.e., é = 0. Thus one poasihble cholce open to sSociety is to plan
for a growth path that in the long run produces zero

environmental degradation.

Conditions () and {9} alsc indicate, howewver, that as long as
some {net} envircnmental degradaticn is continuing to occur,
environmental guality will decline. Egquation {9} suggestsz that
there is a lower limit te environmental guality. A= noted above,
if ¥ is driven below X, envirenmental degradation will have
destroved the natural clean—-up and regenersative processes in the
environment, This is tantamount to an envirommental ‘collapse’,
and economnle growth leading te such a collapse can be salid to be
envirenmentally ;unsustainable'. Neverthelesz, there may be
conditions under which scociety may have no cholce but opt for an

unaustainable growth path.

However, in general, there will also be conditions leading
aoclety to a sustainable growth path. The pursult of
sustainability inevitably involves some intertemporal trade-ocffs
between levelz of consumption and environmental guality. For
ezample, in Figure 4, thse C-X curve traces for evary leveal of

environmental gquality the ‘“sustainable' level of consumption that
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just leaves environmental degradation unchanged. Thus if at a
given level of environmental gquality, %, one consumes less than
the sustainable level of consumphtion, C., then the environment
will improwve and society will be able to sustain higher level of
consumptieon in the futurs., Hence, there is, im this
intertemporal sense, a positive relationship betwesn increases in

consumption (i.e., growth] and improveaments in the snvironment.

However, the convexity of the C-X locus indicates that, as
gociety sacrifices consumption now., 2o the improvemants in ths
environment get smaller and smaller. On the other hand, the
value of that sdcrifice increases bscausse of a diminishing
marginal rats of substitution between consumption and
enviroenmental goods {i.e. fhe convexity of the indiffersnce
curvel]. Presumably then there would be a point where the two
would balance out, In the long run zguilibrium, the utility
value of 3 unit of consumption sacrificed today szheoeuld zgual tha
discounted present value of the higher consumpticon and
environmental quality afforded in perpatuity te future
generationzsz. The higher the disceount rats, the lezz the latter
would be and so the equilibrium would bhe at a lowar point on the
C—-¥X curve, Thiz iz becausze the pbenefits of a unit of consunption

in termz of the higher X walus irz permits £all as ¢ falls,

We therefore examine furthar the optimal conditions leading to
sustainablse wversus unsustainable sconemic grewth. Given a
positive rate of time preferencs, ¥, the planning problem is to

find solutions which will
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Max J e-rt U{g,H} dt {11}
A

subject to X = — ahi{C,X),
X{t=0) = X,, X{t=w) free, X > X.

Given the csontinucus function Pi{t), the Hamiltonian of the

problem is:

m
i

a-Tt fUlC,¥) + Pi—ahi{c.X)11. {12)

The first-order conditions for an interior solution are:

dH = U; - Pah: = 0, RNEEY
ac 5
or P = U /ahe > 0,
and
ﬁ - rP = - dH = =~ Uy + Pahg, (14}
d¥
oY P = J[r + ahx 1P - Ux,
and
X = - ah(C,X). (15}

Pi{t] is the costate wariable, which c¢an be interpreted az the
social wvalue, or shadow price, of envirommental quality.

Condition {13} gives  as an explicit function of P and ¥ with:

dc = ahe £ G,. {151
AF Tee — Pahec
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and

a4 = Pahe » > G, {17}
dX Uce — PFahee

if hex < 0. A3 will be discussed below, the latter iz important
with respect to the comparative static analysis of the

equilibrium.

From {14) and {15}, the beshaviocr of the systam from any initial

point, (s, PFao), is governed by:

. » >
F = Q as= fr + ahzx1F = T (13}
g L4
> >
e = 0 as hi{C,X}) = y {19}
£ <
tote mlso that frem applying {9} te {19):
1if lim hi{C Xl—>tw, X - w, (207

ey
ocr alternativaly, given some largs numbar ¥,

+*

if 1im h{C, Elw—BdW, He—s — IT, el
Halr

then as X—X, ¥ = 0 cannct be satisfied. It also follows from

{18} that

if iim hy (C,X)—e 0, rP = Us (X} for F = Q, {22}
KX+

er P o= U {K)/r .

Thuz an interior solution to the probklem must satisfy (12} and
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{19} with egquality, as well as conditiens (20)-(22). The slopes

of the staticnary loci satisfying these egquations are given by:

dFf l. = Tex — ¥ahyyxy - PahxedC/dX {231
d¥ P=0 [r + ahxs ] + ahxzcdC/dR

and
dar |. = - fth: + hcdﬂfdgj . {24)
4ax [ X=0 h: A /4P

which cannot be definitely signed, Gne possible configuration of
the phase diagrams satisfying {18}-{(23} i3 depicted in Figure 5,

to illustrate a stable and an unstable solution.

" In Figure 5, (Ez#*,Pz*) iz a stable equilibrium, whersas (¥;*,P1#)]
iz unstable, If ®. » XL *, than the optimal policy is to select
P. g0 az to place the econony on a growth path that ends st the
stabla sgquilibrium {¥:*,Pz*}, This representzs an
environmentally ‘sustainakle' growth, given the assumpiion that
if ﬁ = @ and X » X, than biophysical constraints are heaing
observed, If X = Zi1*, then it is optimal to remain at Hi *
forsver. If ¥. < ¥.*, assuming cenditicns (20)-{22) ars
satisfied, then the growth path of the sconomy coculd lead to X,
However, this grewth path is unsustainable, for at X, the
asszimilative and regensrative capacity of the environment will
hawve been destroved, and the economy will be forcad to consume
sxisting internal resoutrce stocks. Eventually, the latter will
be consumad and the sconomy will collapzs. Thus Xi1* can be
consldered the minimum initial lewvel of environmental guality

raguired to ensure a sustainable greowth path.
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Thus with a low initial level of envirommental guality,
anvironmentally unsustainable economic growth may be an optimal
strategy. Since the benefits of increased consumption occcur in
the present wheresas environmental degradation and collapse is a
future problem, this strategy is made optimzl by a high rate of
discount on future utility. <Conseguently, both the initial lewvel
of environmental quality as well as the rate of gocial discount
are significant.factors in determining the optimal cholce betwsen

gsustainable and unsustainable growth as one would expect.

These intuitive results hawve been shown to be correct if the
relationship betwesn the rate of environmental degradation,
consumption and the stock of environmental asssts takes a
particular form. We have aszsumed, as szems normal, that other
things being squal the rate of degradation increases as the level
of consumption increases and as the stock of environmental .assets
declines, In additien, however, we are reqguired to assume that
the increase in the rate of degradation as consumption increases
iz higher with smaller environmental stocks than with larger
ones, Thiaz iz the ceconemicfecological interpretation of the
requirement that hes ¢ 0. Note that the latter is a sufficient
condition for the stable equilibrium to cccur with a larger
environmental stock at a lower discount rate, and for the
unstable egquilibrium to occur at a smaller environmental stock in

the fame circumstances.

For example, it is apparent from {18} that an increase in the

discount rate would have the effect of zhifting down the

ie



é = ) curve., is showh in Figure &, the end result may be a
unigue sqguilibrium, kut one that is stable only if Heo > Ha* .
However, 1f Xo ¢ Xs*, it may be coptimal to choose an
unsustainable growth path; i.e2., one that heads towards X. Note
that, as Ha* > X%, an 2COnonyY with an increased discount rate
ragquires a higher miﬁimum initial level of environmental quality
to avoid a growth path that might be environmentally

unsustainable.

In contrast, lower discount ratesz would shift the é = J £urve up,
requiring a lower minimum initial level of envirenmental guality
to ensure sustainasble growth {i.e., Xa* < ¥1*}). These results

appear to confirm the conclusions discussed above of the role of
disesunt rates in determining the sustainability of the economic

Prodess.

It can be confirwmad that the minimum bound on the social rate of
time preference, ¥, is not independent of the historically given
level of environmental quality, H.. HNote that in {18}, for é =0
it ig a reguirement that r » =~ahs: . Given thes preoparties of
hid, %Xy sutiined in {7}, a lewer initial X will zause —ahs to
rige, thus reguiring a higher r to Keep é = 0. <Conversely, a
higher Xs will have a lower rate of discount. As sheown in Figure
7, therefore, the initial level of environmental guality imposes

a lower limit on the ¢hoice of r.

17



Figure 4. The Effects of Changes in r







4. Conclusion

The results of the above model indicate that both the initial
"level of envirconmental guality as well as the rate of time
preference are 2ignificant factors in determining the optimal
choice between sustainable and unsustainable growth. For
example, if technical condition hex ¢ 0 iz satisfied, with a low
initial level of environmenthal guality and a high rate of socizal
discount, environmaEntally unsustainable economic growth may be an
optimal strategy as the benefits of increased consumption occcur
in the present whereas environmental degradation and collapse is
a future problem. Horeover, the initial level of environmental
gquality influences choices of discount rates, so that a
higtorically lower initial level of environmental guality leads

te a high rate of discount and vige versa.

In other words, a low initial level of envirenmental guality
forces resource users to discount the future heavily. That is,
poor people faced with marginal enviromnmental conditions have no
choice but to opt for immediate sconomic berefits at the expense
of the long-run sustalnability of their livelihoods. This
particularly holds for the marginal lands of the Third World,
which are areas characterized not only by lower guality and
productivity but also by their greater instability, especially
as regards to micro-climatice, agro-ecological and soil
conditions.!t Thuz if econowmic development is to offer the
resource-poor the copportunity of sustainable and secure

liveliheoods, then sustainable resource mahagement must beceome a

18



primary development goal.

For exanple, one of the conseguences of deforestation and the
depletion of fuelwood supplies is that it forces poor households
to divert dung for uze az fuel rather than for fertilizer. The
‘present valus' of the dung as fuel is higher than itz walue as a
801l nutrient, but "the context is one where there is no choice
anyway =ince theres are neither fuel nor fertilizer =substitutes to
which households can gain access™. This beshavicur, therefore, is
itself "the result of the regource degradation process which
compels actions to bhe taken which inply high dizcount rates" . l¥®
In other words, the high zpparent discount rates are a reflection
of the constraints imposed by environmental degradation rather

than the desired sccial choloe.

The above analvsis alse has implications for the incorporation of
environmental impacts into cost-benefit analyveis of development
projacts. As this expanded approach inevitably raises dissues of
intertemperal cholee, the interest rate chosen to disceunt the
future may determine whether environmental degradation is
“optimal' - as demonstrated formally in the model of thisz paper.
But it does not necessarily follow that manipulating the discount
rate is the best approach to incorporating concernzs for

environmental sustainability in the project analysis.

For example, it is often stressed that the appropriate discount
rate should emerge from the project appraisal process.t?® In

practice, imperfect capital markets, inceongistent data on the
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productivity of capital and large variances in domestic borrowing
for investment make it difficult to establish an economic
accounting rate of interest for developing countries.2o
Introducing environmental considerations further complicates the
plcture. Az Markandya and Pearce observe, nhatural rescurces are
more likely to be over-exploited at high discount rates than at
low cones., whereas low discount rates discriminate against
projects with an environmental dimension that have a long.
gestation period.?! Given the additiconal problems posed by
environmental risk and lrreversible impacts, these authors
cenclude that it is generally preferablse to adjust the project
costs and benefit walues and adopt additional sustainability
criteria than te adjust the discount rate, Alternatively, one
could reguire as a planning criterion that the environmental
damages inflicted by a glven portfolic of projects pust be -
compensated by the net environmental benefits generated by an

additional set of projects.??®

Thus the fact that the choice of discount rate is not independent
of the historically given level of envirvonmental quality - i.e.,
that thes resource degradation process may compbel acticns that
imply high discountwfétes - deoes net necessarily mean that
choosing a low level of discount rate will automatically make

development projects more "sustainable’,
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